
VIRUS BULLETIN www.virusbtn.com

6 MAY 2011

FLIBI: EVOLUTION
Peter Ferrie
Microsoft, USA

The Flibi virus demonstrated that a virus can carry its own
‘genetic code’ (see VB, March 2011, p.4), and if the codons1
(the p-code form of the virus), the tRNA2 (the translator
function), or the corresponding amino acids3 (the native
code) are mutated in some way, then interesting behaviours
can arise.

Each codon is used as a relative offset into a table of amino
acids. There is a single pointer to the table. Mutation of a
codon might cause a new amino acid to be produced, since
it might now point to a different entry in the table. Mutation
of the pointer would almost certainly be fatal since many
codons would not be translated into the correct amino
acids. Mutation of the amino acid itself might produce new
behaviour, depending on the change. For example, a shift
could become a rotate.

The virus has the ability to move a sequence of codons to
a later position in the stream4, and then fi ll the gap with
no-operation instructions. In most cases, this simply results
in the replacement of the codons at the destination5. Of
course, if the selected sequence appears at the end of the
defi ned stream (there is a lot of slack space after the last
meaningful codon), then the size of the defi ned stream
will increase slightly each time that condition occurs.
However, the size of the buffer remains fi xed. Therefore,
new sequences can only appear when the translator code
is modifi ed to increase the number of codons that are
translated, thus ‘translating’ garbage beyond the original
end of the stream. That garbage could potentially be
modifi ed over time to eventually produce meaningful
functionality. Its location in the virus body would change
over time as a result of the codon deletion, allowing the
new amino acids to ‘migrate’ to a fi nal position where they
become truly useful. The human eye did not spring fully
formed from the dust of the earth but was the result of

1 A codon is a trinucleotide sequence of DNA or RNA (the nucleic
acids that contain the genetic instructions used in the development and
functioning of living organisms) that corresponds to a specifi c amino
acid. See http://www.genome.gov/Glossary/index.cfm?id=36.
2 Transfer RNA, or tRNA, is a small RNA molecule that is
involved in protein synthesis. See http://www.wiley.com/college/
boyer/0470003790/structure/tRNA/trna_intro.htm.
3 Amino acids are the building blocks of proteins. See
http://en.wikipedia.org/w/index.php?title=Amino_
acid&oldid=412676887.
4 There is a bug in this code, which can result in attempting to copy
more bytes than exist in the source.
5 There is an additional case where the destination is the same as the
source, in which case the codons are deleted.

gradual refi nements in image accuracy. Something similar
can occur here, where the sequence of amino acids does
not need to work completely (or even at all) in order to be
useful (or just retained). As unlikely as these things are,
millions of computer years from now, we might see some of
the following transformations.

The aim of this article is to demonstrate how some
instructions from the original set might be removed by
replacing them with functionally equivalent code sequences
using the remaining instructions. One advantage of a
smaller instruction set is that it allows an increase in the
number of codons that can map to a single amino acid,
thus making the body more resilient to corruption. Further,
a sequence of instructions has a smaller risk of lethal
mutation than a single instruction, because the risk is spread
over a wider area.

We begin with a brief overview of the language itself. There
are 45 commands in the release version (there were only
43 in the preview version). There are three general-purpose
registers (‘A’, ‘B’ and ‘D’, which correspond to the ‘eax’,
‘ebp’ and ‘edx’ CPU registers); one temporary register, upon
which all operations are performed (which corresponds to
the ‘ebx’ CPU register); one ‘operator’ register, which holds
the value for any operation that requires a parameter (which
corresponds to the ‘ecx’ CPU register); and two buffer
registers, one of which holds the destination for branching
instructions (which corresponds to the ‘esi’ CPU register),
and the other holds the destination for write instructions
(which corresponds to the ‘edi’ CPU register).

The language supports the following commands:

• _nopsA, _nopsB, _nopsD, _nopdA, _nopdB, _nopdD

• _saveWrtOff, _saveJmpOff

• _writeByte, _writeDWord

• _save, _addsaved, _subsaved

• _getDO, _getdata, _getEIP

• _push, _pop, _pushall, _popall

• _zer0

• _mul, _div, _shl, _shr, _and, _xor

• _add0001, _add0004, _add0010, _add0040, _add0100,
_add0400, _add1000, _add4000, _sub0001

• _nopREAL

• _JnzUp, _JzDown, _JnzDown

• _CallAPILoadLibrary, _CallAPIMessageBox,
_CallAPISleep (release version), _call

• _null (release version, it has no actual name)

This set can be reduced in several ways. The most obvious
candidates for removal are the three API calls (two in the

TECHNICAL FEATURE

http://www.virusbtn.com/pdf/magazine/2011/201103.pdf
http://www.genome.gov/Glossary/index.cfm?id=36
http://www.wiley.com/college/ boyer/0470003790/structure/tRNA/trna_intro.htm
http://en.wikipedia.org/w/index.php?title=Amino_acid&oldid=412676887

VIRUS BULLETIN www.virusbtn.com

7MAY 2011

preview version6). The APIs can be called using the ‘_call’
command if the API addresses are placed in the data section
in this way:

_getDO ;get data offset

_addnnnn ;adjust ebx as appropriate to reach the
 ;required offset

_call ;call the API

This leaves 42 commands remaining (41 in the preview
version).

The ‘_zer0’ command can be removed by using this code:

_save ;ecx = ebx

_xor ;ebx = 0

41 (40) commands now remain.

The ‘_subsaved’ command (which performs the action
‘ebx = ebx – ecx’) can be removed, and the ‘_addsaved’
command (which performs the action ‘ebx = ebx + ecx’)
can be used instead, with a slight change. Specifi cally, the
new value of the ‘ecx’ register is ‘-ecx’ (such that ‘ebx =
ebx + -ecx’). However, there is no negate command, so an
equivalent result must be achieved using the combination
of operations that perform a ‘not’ and an ‘add 1’. The
problem is that a ‘not’ operation uses the value ‘0xffffffff’,
which requires many steps to construct. Given the existing
instruction set, it would be simplest to place the value
‘0xffffffff’ in the data section7. It must be placed at the start
of the data section, because the ‘_addnnnn’ commands can
be removed, leaving no way to select another offset. This
algorithm can then be used:

xor ebx, 0xffffffff

inc ebx

which we translate into this code:

_push

_getDO ;get data offset

_getdata ;fetch 0xffffffff

_xor ;logically ‘not’ ebx

_add0001 ;increment result to complete negate

_save ;replace ecx

_pop

_addsaved ;ebx = ebx + ecx

40 (39) commands remain.

In the same way, the ‘_sub0001’ command can be removed
by using this code:

_push

_getDO ;get data offset

6 The ‘_CallAPISleep’ command was added to the release version
because the API resolver code could not resolve the Sleep() API on
certain platforms. The reason is described in detail in the previous
article (VB, March 2011, p.4).
7 It would be even simpler to introduce an instruction which performs a
‘mov ebx, 0xffffffff’.

_getdata ;ebx = 0xffffffff

_save ;ecx = 0xffffffff

_pop

_addsaved ;ebx = ebx - 1

39 (38) commands remain.

The ‘_addnnnn’ commands exist for convenience, but all of
the commands apart from ‘_add0001’ can be constructed
using the ‘_add0001’ command. Thus, the ‘_add0004’, ‘_
add0010’, ‘_add0040’, ‘_add0100’, ‘_add0400’, ‘_add1000’
and ‘_add4000’ commands can be removed.

32 (31) commands remain.

The ‘_add0001’ command can also be removed, because the
number ‘1’ can be recovered from the value ‘0xffffffff’ by
using this code:

_getDO ;get data offset

_getdata ;ebx = 0xffffffff

_save ;ecx = 0xffffffff

;here is a horrible trick:
;modern CPUs limit the shift-count to 0x1f by taking
;the low fi ve bits for the count and simply discarding
;the rest of the value internally, this performs a
;cl & 0x1f and it’s exactly what we need

_shr ;ebx = ebx >> cl

_save ;ecx = 1

From then on, the ‘_addsaved’ command can be used to
increment the ‘ebx’ register as needed.

31 (30) commands remain.

Of course, it would require very many uses of the
‘_addsaved’ command in order to construct large values,
but value construction can be accelerated by using the ‘_shl’
and ‘_xor’ commands.

For example, constructing the value ‘2’ is a matter of the
following:

_shl ;ebx = ebx << cl (ebx and ecx are ‘1’
 ;from above)

Constructing the value ‘3’, beginning with the ‘ebx’ and
‘ecx’ registers holding the value ‘1’, as above, is a matter of
the following:

_shl ;ebx = ebx << cl

_xor ;ebx = ebx ^ ecx

Constructing the value ‘4’, beginning with the ‘ebx’ and
‘ecx’ registers holding the value ‘1’, as above, is a matter of
the following:

_shl ;ebx = ebx << cl

_shl ;ebx = ebx << cl

And so on. Given this algorithm, we can see that the value
‘0xffffffff’ is not the only possible ‘base constant’. The
value ‘1’ could be used instead, since the value ‘0xffffffff’
could be produced from it in the following way:

http://www.virusbtn.com/pdf/magazine/2011/201103.pdf

VIRUS BULLETIN www.virusbtn.com

8 MAY 2011

_getDO ;get data offset

_getdata ;ebx = 1

_save ;ecx = 1

_shl ;ebx = 2

_xor ;ebx = 3

_shl ;ebx = 6

_xor ;ebx = 7

_shl ;ebx = 0x0e

_xor ;ebx = 0x0f

... [54 steps]

_shl ;ebx = 0xfffffffe

_xor ;ebx = 0xffffffff

_save ;ecx = 0xffffffff

Clearly, it is far simpler to go from ‘0xffffffff’ to ‘1’ than the
other way around. Note that values can also be constructed
using the ‘reverse’ of this technique, to reduce the number
of shifts required. For example, constructing the value
‘0x80000000’ is a matter of the following:

_getDO ;get data offset

_getdata ;ebx = 0xffffffff

_save ;ecx = 0xffffffff

_shl ;ebx = 0x80000000

Constructing the value ‘0x40000000’ is a matter of the
following:

_push

_shr ;ebx = ebx >> cl (ebx = 0x80000000,
 ;ecx = 0xffffffff from above)

_save ;ecx = 1

_pop

_shr ;ebx = 0x40000000

However, setting additional bits in the upper region requires
more than just the ‘_xor’ command. Here are two examples
that set the same value, one using the ‘_shl’ command and
one using the ‘_shr’ command. To construct a value such as
‘0xf0000000’, beginning with the ‘ebx’ register holding the
value ‘0x80000000’ and the ‘ecx’ register holding the value
‘0xffffffff’, as above, the following can be used:

_push

_shr ;ebx = ebx >> cl

_save ;ecx = 1

_pop ;ebx = 0x80000000 again

_push

_shr ;ebx = 0x40000000

_push

_shr ;ebx = 0x20000000

_push

_shr ;ebx = 0x10000000

_save ;ecx = 0x10000000

_pop

_xor ;ebx = 0x30000000

_pop

_xor ;ebx = 0x70000000

_pop

_xor ;ebx = 0xf0000000

Whereas, to construct the value ‘0xf0000000’, beginning
with the ‘ebx’ and ‘ecx’ registers holding the value
‘0xffffffff’, as above, the following can be used:

_push

_shr ;ebx = ebx >> cl

_save ;ecx = 1

_shl ;ebx = 2

_xor ;ebx = 3

_shl ;ebx = 6

_xor ;ebx = 7

_shl ;ebx = 0x0e

_shl ;ebx = 0x1c

_save ;ecx = 0x1c

_pop

_shl ;ebx = 0xf0000000

Thus, depending on the value, the ‘_shl’ method is the
simplest.

Astute readers will have noticed that none of the value
constructions above use the ‘_addsaved’ command. This
shows that constants can be constructed without using any
form of ‘add’. However, it is also possible to perform the
addition of arbitrary values without using any form of ‘add’,
resulting in the removal of the ‘_addsaved’ command by
using this algorithm (edx and ebp holding the values to add
together):

eax = edx ^ ebp

do

{

 ebp = (ebp & edx) << 1

 edx = eax

 eax = edx ^ ebp

}

while (edx & ebp)

ebx = eax

which we translate into this code:

[construct here the fi rst value to add, not shown]

_nopdD ;edx = ebx

[construct here the second value to add, not shown]

_nopdB ;ebp = ebx

_save ;ecx = ebx

_nopsD ;ebx = edx

 ;optional, depending on the order of the
 ;constructions above

_xor ;ebx = edx ^ ebp

_nopdA ;eax = edx ^ ebp

_getEIP

_push ;top of do-while loop
 ;ebx points to a hidden ‘pop ebx’
 ;instruction as part of _getEIP so there
 ;is no explicit ‘pop’ instruction inside
 ;the loop that corresponds to this ‘push’
 ;instruction

_saveJmpOff ;esi = ebx

_nopsD ;ebx = edx

_save ;ecx = edx

VIRUS BULLETIN www.virusbtn.com

9MAY 2011

_nopsB ;ebx = ebp

_and ;ebx = ebp & edx

_push

_getDO ;get data offset

_getdata ;ebx = 0xffffffff

_save ;ecx = 0xffffffff

_shr ;ebx = 1

_save ;ecx = 1

_pop

_shl ;ebx = (edx & ebp) << 1

_nopdB ;ebp = (edx & ebp) << 1

_save ;ecx = ebx

_nopsA ;ebx = eax

_nopdD ;edx = eax

_push

_xor ;ebx = edx ^ ebp

_nopdA ;eax = edx ^ ebp

_pop

_and ;ebx = edx & ebp

_JnzUp ;loop while ((edx & ebp) != 0)

_pop ;discard loop address

_nopsA ;ebx = eax

30 (29) commands remain.

The replacement code for the ‘_addsaved’ command
requires the use of the base constant from the data section
(and here, the value ‘1’ would result in shorter code).

The value ‘1’ can be constructed dynamically instead, in the
following way:

_getEIP

_getdata ;ebx=0xxxxxxx5b

_save ;ecx=0xxxxxxx5b

_shl

_shr ;ebx=0x1b

_save ;ecx=0x1b

_addsaved ;ebx=0x36

_addsaved ;ebx=0x51

_addsaved ;ebx=0x6c

_addsaved ;ebx=0x87

_save ;ecx=0x87

_shr ;ebx=1

However, that algorithm prevents the removal of the
‘_addsaved’ command. The two concepts seem to be
mutually exclusive.

It is unclear whether the ‘_nopREAL’ command could be
removed, since there is no other single-byte command that
might take its place in the event that a true ‘no-operation’
command were required. Its current purposes are to pad
the unused slots following codon deletion and to fi ll the
unused slot(s) that follow the ‘_JnzDown’ command (since
the ‘_JnzDown’ command skips three slots). Note that
the current implementation of the ‘_JnzDown’ command
contains a bug, which is that the destination of the branch
is not the start of a slot. Instead, the command branches

to two bytes past the start of the slot. The result is that the
‘_nopREAL’ command must be used to fi ll that destination
slot, otherwise a crash could occur because the branch
might land in the middle of a command. However, the
‘_JnzDown’ command can be removed by using alternative
code, and any non-stack and non-memory instruction can be
used for tail padding. Thus it appears that, given its current
uses, the ‘_nopREAL’ command can be removed.

29 (28) commands remain.

In the release version a ‘_null’ command exists, which emits
a single zero into the stream, followed by the ‘nop’ padding.
Its existence is the result of a bug. The execution of such an
instruction is likely to cause an exception. It is possible on
Windows XP and later to register a vectored exception handle
using the existing language, and that could intercept the
exception, but this is quite outside the ‘style’ of the language.
The command can be removed without any problem.

28 commands remain.

The ‘_JnzDown’ command could be removed by using
a careful implementation of ‘_JnzUp’ (given that the
meaning is reversed), but perhaps not without the loss of
some functionality. It requires knowledge of the location
of a forward branch destination. This interferes with
command reordering if the buffer size is fi xed, because
there might not be enough slots available to construct the
required ‘add’ value (unless the maximum number of slots
was reserved each time in order to construct any possible
number). It does, however, extend the functionality in a
different way, since the ‘_JnzDown’ command can skip
only three commands at a time, requiring its use multiple
times in order to execute larger conditional blocks. The
‘_JnzDown’ command also places severe restrictions on
what can appear in those conditional blocks, since an
arithmetic operation might clear the Z fl ag, causing the
branch to be taken instead of skipped. In contrast, the use
of the ‘_JnzUp’ command can skip an arbitrary number
of commands without restriction. The difference can be
demonstrated easily. We begin with some code that calls the
GetTickCount() API to fetch a ‘random’ number (for ease
of demonstration, the offset of the GetTickCount() API is
set arbitrarily to the value ‘0x0c’), using the ‘_JnzDown’
command:

;construct pointer to GetTickCount()

;construct the value “0x0c”

_getDO ;get data offset

_getdata ;ebx = 0xffffffff

_save ;ecx = 0xffffffff

_shr ;ebx = 1

_save ;ecx = 1

_shl ;ebx = 2

_xor ;ebx = 3

VIRUS BULLETIN www.virusbtn.com

10 MAY 2011

_shl ;ebx = 6

_shl ;ebx = 0x0c

_nopdB ;ebp = 0x0c

_save ;ecx = 0x0c

;add to data offset

_getDO ;get data offset

_nopdD ;edx = data offset

_xor ;ebx = edx ^ ebp

_nopdA ;eax = edx ^ ebp

_getEIP

_push ;top of do-while loop
 ;ebx points to a hidden ‘pop ebx’
 ;instruction as part of _getEIP
 ;so there is no explicit ‘pop’
 ;instruction inside the loop
 ;that corresponds to this ‘push’
 ;instruction

_saveJmpOff ;esi = ebx

_nopsD ;ebx = edx

_save ;ecx = edx

_nopsB ;ebx = ebp

_and ;ebx = ebp & edx

_push

_getDO ;get data offset

_getdata ;ebx = 0xffffffff

_save ;ecx = 0xffffffff

_shr ;ebx = 1

_save ;ecx = 1

_pop

_shl ;ebx = (edx & ebp) << 1

_nopdB ;ebp = (edx & ebp) << 1

_save ;ecx = ebx

_nopsA ;ebx = eax

_nopdD ;edx = eax

_push

_xor ;ebx = edx ^ ebp

_nopdA ;eax = edx ^ ebp

_pop

_and ;ebx = edx & ebp

_JnzUp ;loop while ((edx & ebp) != 0)

_pop ;discard loop address

_nopsA ;ebx = eax

;call GetTickCount()

_call

Then the choice is made, and the branch might be taken
(seven in eight chances to take it):

;construct the value ‘7’

_getDO ;get data offset

_getdata ;ebx = 0xffffffff

_save ;ecx = 0xffffffff

_shr ;ebx = 1

_save ;ecx = 1

_shl ;ebx = 2

_xor ;ebx = 3

_shl ;ebx = 6

_xor ;ebx = 7

_save ;ecx = 7

;’and’ with result from GetTickCount()

_nopsA

_and ;ebx = ebx & 7

_JnzDown

[conditional command 1]

[conditional command 2]

[conditional command 3]

_nopREAL ;work around ‘_JnzDown’ bug

The replacement code might look something like this,
beginning immediately after the call to the GetTickCount()
API:

 ;save result from GetTickCount()

 _nopsA

 _push

 ;construct pointer to l2

 _getDO ;get data offset

 _getdata ;ebx = 0xffffffff

 _save ;ecx = 0xffffffff

 _shr ;ebx = 1

 _save ;ecx = 1

 ... [‘_shl’ and ‘_xor’ as needed to produce the
 value ((lines(l1...l2) * 8) + 3)]

 _nopdB ;ebp = offset of l2

 _save ;ecx = offset of l2

 _getEIP

l1: _nopdD ;edx = eip

 _xor ;ebx = edx ^ ebp

 _nopdA ;eax = edx ^ ebp

 _getEIP

 _push ;top of do-while loop
 ;ebx points to a hidden ‘pop ebx’
 ;instruction as part of _getEIP
 ;so there is no explicit ‘pop’
 ;instruction inside the loop
 ;that corresponds to this ‘push’
 ;instruction

 _saveJmpOff ;esi = ebx

 _nopsD ;ebx = edx

 _save ;ecx = edx

 _nopsB ;ebx = ebp

 _and ;ebx = ebp & edx

 _push

 _getDO ;get data offset

 _getdata ;ebx = 0xffffffff

 _save ;ecx = 0xffffffff

 _shr ;ebx = 1

 _save ;ecx = 1

 _pop

 _shl ;ebx = (edx & ebp) << 1

 _nopdB ;ebp = (edx & ebp) << 1

 _save ;ecx = ebx

 _nopsA ;ebx = eax

VIRUS BULLETIN www.virusbtn.com

11MAY 2011

 _nopdD ;edx = eax

 _push

 _xor ;ebx = edx ^ ebp

 _nopdA ;eax = edx ^ ebp

 _pop

 _and ;ebx = edx & ebp

 _JnzUp ;loop while ((edx & ebp) != 0)

 _pop ;discard loop address

 _nopsA ;ebx = eax

 _saveJmpOff

 ;restore result from GetTickCount()

 _pop

 _nopdA ;eax = GetTickCount()

 ;construct the value ‘7’

 _getDO ;get data offset

 _getdata ;ebx = 0xffffffff

 _save ;ecx = 0xffffffff

 _shr ;ebx = 1

 _save ;ecx = 1

 _shl ;ebx = 2

 _xor ;ebx = 3

 _shl ;ebx = 6

 _xor ;ebx = 7

 _save ;ecx = 7

 ;’and’ with result from GetTickCount()

 _nopsA ;ebx = GetTickCount()

 _and ;ebx = ebx & 7

 _JnzUp

 [conditional command 1]

 [conditional command 2]

 [conditional command 3]

 ...

 [conditional command n]

l2: ;branch destination is here

27 commands remain.

In the same way as for the ‘_JnzDown’ command, the
‘_JzDown’ command can be removed.

26 commands remain.

Normally, the ‘ecx’, ‘esi’ and ‘edi’ registers are write-only
(technically, the ‘ecx’ register only becomes write-only after
the ‘_addsaved’ command is removed), leaving the ‘eax’,
‘ebx’, ‘edx’ and ‘ebp’ registers as general-purpose registers.
However, there is a way to read these registers again after
they have been written. The ‘_pushall’ command pushes the
registers onto the stack in this order: eax, ecx, edx, ebx, esp,
ebp, esi, edi. The registers can then be popped individually
from the stack, by using the ‘_pop’ command, in the
following way:

_pushall ;save all registers

_pop ;edi

_pop ;esi

_pop ;ebp

_pop ;esp (useful for reading stack parameters,
 ;using the ‘_getdata’ command, see below)

_pop ;ebx

_pop ;edx

_pop ;ecx

_pop ;eax

A smaller set of ‘_pop’ commands can be used to access
particular registers, leaving the others for removal later,
if necessary. The popped registers can also be modifi ed
and pushed back onto the stack, allowing the ‘_popall’
command to be used to pop all of them. This allows
multiple values to be assigned simultaneously. By
combining several of these tricks, it becomes possible to
remove the ‘_mul’ command (edx:eax = eax * ebx). A
working solution can be downloaded from
http://pferrie.tripod.com/misc/fl ibi_mul.zip.

25 commands remain.

Interestingly, by reordering the register initialization code
for the fi rst addition block to remove one instruction, the
code actually increases in size because the branch to l4
requires more instructions to construct it as a result. This
brings us to a special-case problem of dynamic pointer
construction. There is a particular problem when the code
at l2 branches to l4 and the code at l3 branches to l1, but
where l1 < l2 and l4 > l3, as shown here:

l1: [code]

l2: jz l4

l3: jnz l1

l4: [code]

First, construct the branch from l2 to l4:

l1: [code]

 ;construct relative to l2 (two instructions)

 mov reg, 1

 shl reg, 1

l2: jz l2+reg

l3: jnz l1

l4:

[code]

Then construct the branch from l3 to l1:

l1: [code]

 mov reg, 1

 shl reg, 1

l2: jz l2+reg

 ;construct relative to l3 (four lines)

 ;[code] at l1 is a single instruction to keep
 ;the example simple

l3: mov reg, 1

 shl reg, 1

 shl reg, 1

 jnz l3-reg

l4: [code]

http://pferrie.tripod.com/misc/flibi_mul.zip

VIRUS BULLETIN www.virusbtn.com

12 MAY 2011

Now the branch at l2 is affected, and no longer points to l4,
so reconstruct it:

l1: [code]

 ;construct relative to l2 (fi ve instructions)

 mov reg, 1

 shl reg, 1

 shl reg, 1

 add reg, 1

l2: jz l2+reg

l3: mov reg, 1

 shl reg, 1

 shl reg, 1

 jnz l3-reg

l4: [code]

But now the branch at l3 is affected, and no longer points to
l1, so reconstruct it:

l1: [code]

 mov reg, 1

 shl reg, 1

 shl reg, 1

 add reg, 1

l2: jz l2+reg

 ;construct relative to l3 (six instructions)

l3: mov reg, 1

 shl reg, 1

 add reg, 1

 shl reg, 1

 jnz l3-reg

l4: [code]

Again, the branch at l2 is affected and no longer points to
l4, so reconstruct it:

l1: [code]

 ;construct relative to l3 (six instructions)

 mov reg, 1

 shl reg, 1

 add reg, 1

 shl reg, 1

l2: jz l2+reg

l3: mov reg, 1

 shl reg, 1

 add reg, 1

 shl reg, 1

 jnz l3-reg

l4: [code]

Finally, the instructions are reordered but not inserted, and
the combination works. The limitation is that the lines in
the construction must converge on a multiple of each other.
Such a value might not exist without the explicit insertion
of ‘alignment’ lines. The ‘_nop’ command could be used
for this purpose, but any ‘harmless’ instruction can be used,
such as moving to/from the same register from/to which

a value was just moved (more specifi cally, if the previous
move instruction was from ebx to eax, then it is harmless to
move from eax back into ebx). By combining several of these
tricks, it becomes possible to remove the ‘_div’ command
(eax, edx = edx:eax / ebx) as well. A working solution can be
downloaded from http://pferrie.tripod.com/misc/fl ibi_div.zip.

24 commands remain.

The ‘_writeDWord’ command can be removed by using this
algorithm:

mov [edi], bl

inc edi

shr ebx, 8

mov [edi], bl

inc edi

shr ebx, 8

mov [edi], bl

inc edi

shr ebx, 8

mov [edi], bl

which we translate into this code:

;construct the value ‘8’

_push

_getDO ;get data offset

_getdata ;ebx = 0xffffffff

_save ;ecx = 0xffffffff

_shr ;ebx = 1

_save ;ecx = 1

_shl ;ebx = 2

_shl ;ebx = 4

_shl ;ebx = 8

;save in ecx for later

_save ;ecx = 8

_pop

;write byte 0

_writeByte

;increment edi

_pushall

_getDO ;get data offset

_getdata ;ebx = 0xffffffff

_save ;ecx = 0xffffffff

_shr ;ebx = 1

_nopdB ;ebp = 1

_save ;ecx = 1

_pop ;ebx = edi

_nopdD ;edx = edi

_xor ;ebx = edx ^ ebp

_nopdA ;eax = edx ^ ebp

_getEIP

_push ;top of do-while loop
 ;ebx points to a hidden ‘pop ebx’ instruction
 ;as part of _getEIP so there is no explicit
 ;‘pop’ instruction inside the loop that
 ;corresponds to this ’push’ instruction

http://pferrie.tripod.com/misc/flibi_div.zip

VIRUS BULLETIN www.virusbtn.com

13MAY 2011

_saveJmpOff ;esi = ebx

_nopsD ;ebx = edx

_save ;ecx = edx

_nopsB ;ebx = ebp

_and ;ebx = ebp & edx

_push

_getDO ;get data offset

_getdata ;ebx = 0xffffffff

_save ;ecx = 0xffffffff

_shr ;ebx = 1

_save ;ecx = 1

_pop

_shl ;ebx = (edx & ebp) << 1

_nopdB ;ebp = (edx & ebp) << 1

_save ;ecx = ebx

_nopsA ;ebx = eax

_nopdD ;edx = eax

_push

_xor ;ebx = edx ^ ebp

_nopdA ;eax = edx ^ ebp

_pop

_and ;ebx = edx & ebp

_JnzUp ;loop while ((edx & ebp) != 0)

_pop ;discard loop address

_nopsA ;ebx = eax

;update edi

_push

_popall ;edi = eax and rebalance stack

;shift ebx right by 8

_shr ;ebx = ebx >> 8

;write byte 1

_writeByte

[repeat twice more, beginning with ‘increment edi’
from above, to write the remaining bytes]

Of course, if there were a command to write a new value
for the stack pointer, then the stack could be moved to
the destination address, and a ‘_push’ command could be
used to write the value. However, there would need to be a
corresponding command to read the previous value for the
stack pointer in order to restore it afterwards. This is quite
outside the ‘style’ of the language.

23 commands remain.

Another instruction that can be removed is the ‘_call’
command. A subroutine call is equivalent to pushing
the return address onto the stack, and then jumping to
the location of the subroutine. It can be replaced by the
‘_JnzUp’ command in the following way (again, calling the
GetTickCount() API, as above):

 ;construct pointer to l2

 _getDO ;get data offset

 _getdata ;ebx = 0xffffffff

 _save ;ecx = 0xffffffff

 _shr ;ebx = 1

 _save ;ecx = 1

 ... [‘_shl’ and ‘_xor’ as needed to produce the
 value ((lines(l1...l2) * 8) + 3)]

 _nopdB ;ebp = offset of l2

 _save ;ecx = offset of l2

 _getEIP

l1: _nopdD ;edx = eip

 _xor ;ebx = edx ^ ebp

 _nopdA ;eax = edx ^ ebp

 _getEIP

 _push ;top of do-while loop
 ;ebx points to a hidden ‘pop ebx’ instruction
 ;as part of _getEIP so there is no explicit
 ;’pop’ instruction inside the loop that
 ;corresponds to this ‘push’ instruction

 _saveJmpOff ;esi = ebx

 _nopsD ;ebx = edx

 _save ;ecx = edx

 _nopsB ;ebx = ebp

 _and ;ebx = ebp & edx

 _push

 _getDO ;get data offset

 _getdata ;ebx = 0xffffffff

 _save ;ecx = 0xffffffff

 _shr ;ebx = 1

 _save ;ecx = 1

 _pop

 _shl ;ebx = (edx & ebp) << 1

 _nopdB ;ebp = (edx & ebp) << 1

 _save ;ecx = ebx

 _nopsA ;ebx = eax

 _nopdD ;edx = eax

 _push

 _xor ;ebx = edx ^ ebp

 _nopdA ;eax = edx ^ ebp

 _pop

 _and ;ebx = edx & ebp

 _JnzUp ;loop while ((edx & ebp) != 0)

 _pop ;discard loop address

 _nopsA ;ebx = eax

 ;save return address on stack

 _push

 ;construct pointer to GetTickCount()

 _getDO ;get data offset

 _getdata ;ebx = 0xffffffff

 _save ;ecx = 0xffffffff

 _shr ;ebx = 1

 _save ;ecx = 1

 _shl ;ebx = 2

 _xor ;ebx = 3

 _shl ;ebx = 6

 _shl ;ebx = 0x0c

 _nopdB ;ebp = 0x0c

 _save ;ecx = 0x0c

 _getDO ;get data offset

VIRUS BULLETIN www.virusbtn.com

14 MAY 2011

 _nopdD ;edx = data offset

 _xor ;ebx = edx ^ ebp

 _nopdA ;eax = edx ^ ebp

 _getEIP

 _push ;top of do-while loop
 ;ebx points to a hidden ‘pop ebx’
 ;instruction as part of _getEIP so
 ;there is no explicit ‘pop’
 ;instruction inside the loop that
 ;corresponds to this ‘push’ instruction

 _saveJmpOff ;esi = ebx

 _nopsD ;ebx = edx

 _save ;ecx = edx

 _nopsB ;ebx = ebp

 _and ;ebx = ebp & edx

 _push

 _getDO ;get data offset

 _getdata ;ebx = 0xffffffff

 _save ;ecx = 0xffffffff

 _shr ;ebx = 1

 _save ;ecx = 1

 _pop

 _shl ;ebx = (edx & ebp) << 1

 _nopdB ;ebp = (edx & ebp) << 1

 _save ;ecx = ebx

 _nopsA ;ebx = eax

 _nopdD ;edx = eax

 _push

 _xor ;ebx = edx ^ ebp

 _nopdA ;eax = edx ^ ebp

 _pop

 _and ;ebx = edx & ebp

 _JnzUp ;loop while ((edx & ebp) != 0)

 _pop ;discard loop address

 _nopsA ;ebx = eax

 _getdata ;ebx = offset of GetTickCount()

 _saveJmpOff ;esi = offset of GetTickCount()

 ;clear Z fl ag

 _save ;ecx = ebx

 _and ;ebx = ebx & ebx (known non-zero from
 ;above)

 ;jump to GetTickCount()

 _JnzUp

l2: ;execution resumes here

Local subroutines can be called in the same way; however
there is no ‘return’ command. The equivalent for a ‘return’
command is the following:

;retrieve return address from stack

_pop

_saveJmpOff ;esi = return address

;clear Z fl ag, if required

_save ;ecx = ebx

_and ;ebx = ebx & ebx (known non-zero from above)

;return to caller

_JnzUp

22 commands remain.

The following are two useful tricks just for the sake of
interest. The fi rst one demonstrates how to read parameters
directly from the stack:

[push parameters here, not shown]

_pushall

_pop ;edi

[_nopdA ;eax = edi, if needed]

_pop ;esi

[_nopdD ;edx = esi, if needed]

_pop ;ebp (discard)

_pop ;esp

_push ;esp

_push ;ebp

[_nopsD ;ebx = original esi, if needed]

_push

[_nopsA ;ebx = original edi, if needed]

_push

_popall ;ebp = esp

[add to ebp as needed to reach required variable]

_nopsB ;ebx = ebp

_getdata ;read from stack

Then, simply by replacing the ‘_getdata’ command with
the ‘_call’ command, function pointers on the stack can be
called.

The ‘_push’ command can be removed, but the replacement
code is ugly. It would look like this:

_nopdA ;place into eax in order to appear at the
 ;top of the stack

_pushall

_pop ;discard edi

_pop ;discard esi

_pop ;discard ebp

_pop ;discard esp

_pop ;discard ebx

_pop ;discard edx

_pop ;discard ecx

;eax remains as the only register on the stack

21 commands remain.

The ‘_popall’ command can be removed. The ‘_popall’
command pops the registers from the stack in the following
order: edi, esi, ebp, esp, ebx, edx, ecx, eax. The command
can be replaced by popping and assigning the registers
individually, in the following way:

_pop ;edi

_saveWrtOff

_pop ;esi

_saveJmpOff

_pop ;ebp

VIRUS BULLETIN www.virusbtn.com

15MAY 2011

_nopdB

_pop ;esp (discard)

_pop ;ebx

_pop ;edx

_nopdD

_pop ;ecx

_save

_pop ;eax

_nopdA

20 commands remain.

The ‘_nopdB’, ‘_saveWrtOff’ and ‘_saveJmpOff’
commands can be removed if the ‘_push’ and ‘_popall’
commands are retained. Replacement of the ‘_saveWrtOff’
command would look like this:

_pushall

_pop ;discard existing edi

[construct value to place into edi, not shown]

_push

_popall

Replacement of the ‘_saveJmpOff’ command would look
like this:

_pushall

_pop ;edi

[_nopdD ;preserve edi if needed]

_pop ;discard existing esi

[construct value to place into esi, not shown]

_push

[_nopsD ;restore edi if needed]

_push

_popall

Replacement of the ‘_nopdB’ command would look like
this:

_pushall

_pop ;edi

[_nopdD ;preserve edi if needed]

_pop ;esi

[_nopdA ;preserve esi if needed]

_pop ;discard existing ebp

[construct value to place into ebp, not shown]

_push

[_nopsA ;restore esi if needed]

_push

[_nopsD ;restore edi if needed]

_push

_popall

19 commands remain.

Two other commands can be removed, but they cannot
be replaced using existing instructions. Instead, the
replacement code requires the introduction of another
instruction. The two commands are ‘_shl’ and ‘_shr’. The
replacement instruction is ‘_rot’ (‘rotate’). The direction of

the rotate is not important, as long as it is known, since all
values can be constructed by using it in conjunction with
the ‘_and’ instruction. However, it requires the use of the
value ‘1’ as the ‘base constant’. The value ‘1’ would be
used to construct the values ‘0x7fffffff’ (if rotating shifts to
the right) or ‘0xfffffffe’ (if rotating shifts to the left). This
is the mask value that is used by the ‘_and’ command to
zero the appropriate bit in order to simulate a shift. This is
the simplest implementation that would rotate a value only
once per use without reference to the value in the ‘ecx’
register. Multi-bit rotates could be supported, too, but then
the ‘and’ mask would no longer be a constant. Instead,
it would be specifi c to the number of bits that are being
rotated. So, shifting the value in the ‘eax’ register left by
‘3’ times, using the single-bit rotate command, would look
like this:

;construct the value ‘0xfffffffe’

_getDO ;get data offset

_getdata ;ebx = 1

_save ;ecx = 1

_rot ;ebx = 2

_xor ;ebx = 3

_rot ;ebx = 6

_xor ;ebx = 7

_rot ;ebx = 0x0e

_xor ;ebx = 0x0f

[repeat seven more times, but omit the fi nal xor]

_save ;ecx = 0xfffffffe

;rotate left and zero the overfl ow bits

_nopsA ;ebx = eax

_rot ;ebx = rol(ebx, 1)

_and ;ebx = ebx & 0xfffffffe

_rot ;ebx = rol(ebx, 1)

_and ;ebx = ebx & 0xfffffffe

_rot ;ebx = rol(ebx, 1)

_and ;ebx = ebx & 0xfffffffe

_nopdA ;eax = shl(eax, 3)

18 commands remain:

• _nopsA, _nopsB, _nopsD, _nopdA, _nopdD

• _writeByte

• _save

• _getDO, _getdata, _getEIP

• _push _pop, _pushall, _popall

• _rot, _and, _xor

• _JnzUp

Many years from now, our distant descendants might
stumble upon a codon stream that describes only 18 amino
acids – and we might be looking at its origin. Imagine that.

